Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt-sensitive hypertension.

نویسندگان

  • Jiang Liu
  • Yanling Yan
  • Lijun Liu
  • Zijian Xie
  • Deepak Malhotra
  • Bina Joe
  • Joseph I Shapiro
چکیده

We have observed that, in renal proximal tubular cells, cardiotonic steroids such as ouabain in vitro signal through Na/K-ATPase, which results in inhibition of transepithelial (22)Na(+) transport by redistributing Na/K-ATPase and NHE3. In the present study, we investigate the role of Na/K-ATPase signaling in renal sodium excretion and blood pressure regulation in vivo. In Sprague-Dawley rats, high salt diet activated c-Src and induced redistribution of Na/K-ATPase and NHE3 in renal proximal tubules. In Dahl salt sensitive (S) and resistant (R) rats given high dietary salt, we found different effects on blood pressure but, more interestingly, different effects on renal salt handling. These differences could be explained by different signaling through the proximal tubular Na/K-ATPase. Specifically, in Dahl R rats, high salt diet significantly stimulated phosphorylation of c-Src and ERK1/2, reduced Na/K-ATPase activity and NHE3 activity, and caused redistribution of Na/K-ATPase and NHE3. In contrast, these adaptations were either much less effective or not seen in the Dahl S rats. We also studied the primary culture of renal proximal tubule isolated from Dahl S and R rats fed a low salt diet. In this system, ouabain induced Na/K-ATPase/c-Src signaling and redistribution of Na/K-ATPase and NHE3 in the Dahl R rats, but not in the Dahl S rats. Our data suggested that impairment of Na/K-ATPase signaling and consequent regulation of Na/K-ATPase and NHE3 in renal proximal tubule may contribute to salt-induced hypertension in the Dahl S rat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine regulation of renal Na+,K(+)-ATPase activity is lacking in Dahl salt-sensitive rats.

Dopamine is a natriuretic hormone that acts by inhibiting tubular Na+, K(+)-ATPase activity by activation of the dopamine-1 receptor (the thick ascending limb [TAL] of Henle) or by a synergistic effect of dopamine-1 and dopamine-2 receptors (the proximal tubule). The dopamine-1 receptor is coupled to adenylate cyclase. In this article we show that prehypertensive Dahl salt-sensitive (DS) rats h...

متن کامل

Aminopeptidase N reduces basolateral Na+ -K+ -ATPase in proximal tubule cells.

Aminopeptidase N/CD13 (Anpep) is a membrane-bound protein that catalyzes the formation of natriuretic hexapeptide angiotensin IV (ANG IV) from ANG III. We previously reported that Anpep is more highly expressed in the kidneys of Dahl salt-resistant (SR/Jr) than salt-sensitive (SS/Jr) rats, Anpep maps to a quantitative trait locus for hypertension, and that the Dahl SR/Jr rat contains a function...

متن کامل

Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling

The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood pressure regulation. Recently, cardiotonic steroids (CTS)-mediated Na/K-ATPase signaling has been shown to regulate fibrosis, renal proximal tubule (RPT) sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt diet. Reactive oxyge...

متن کامل

20-HETE or EETs: which arachidonic acid metabolite regulates proximal tubule transporters and contributes to pressure natriuresis?

A MAJOR FUNCTION OF THE KIDNEY is to maintain body fluid and electrolyte homeostasis. Pressure natriuresis is a renal phenomenon that contributes to the long-term regulation of fluid and electrolyte balance and ultimately arterial blood pressure control. The basic phenomenon is that the kidney increases sodium excretion in response to an increase in renal perfusion pressure. A number of studies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 26  شماره 

صفحات  -

تاریخ انتشار 2011